NMR characterization of an engineered domain fusion between maltose binding protein and TEM1 beta-lactamase provides insight into its structure and allosteric mechanism.

نویسندگان

  • Chapman M Wright
  • Ananya Majumdar
  • Joel R Tolman
  • Marc Ostermeier
چکیده

RG13 is a 72 kDa engineered allosteric enzyme comprised of a fusion between maltose binding protein (MBP) and TEM1 beta-lactamase (BLA) for which maltose is a positive effector of BLA activity. We have used NMR spectroscopy to acquire [(15)N, (1)H]-TROSY-HSQC spectra of RG13 in the presence and absence of maltose. The RG13 chemical shift data was compared to the published chemical shift data of MBP and BLA. The spectra are consistent with the expectation that the individual domain structures of RG13 are substantially conserved from MBP and BLA. Differences in the spectra are consistent with the fusion geometry of MBP and BLA and the maltose-dependent differences in the kinetics of RG13 enzyme activity. In particular, the spectra provide evidence for a maltose-dependent conformational change of a key active site glutamate involved in deacylation of the enzyme-substrate intermediate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of effector affinity by hinge region mutations also modulates switching activity in an engineered allosteric TEM1 beta-lactamase switch.

RG13 is an engineered allosteric beta-lactamase (BLA) for which maltose is a positive effector. RG13 is a hybrid protein between TEM1 BLA and maltose-binding protein (MBP). Maltose binding to MBP is known to convert the open form of the protein to the closed form through conformational changes about the hinge region. We have constructed and genetically selected several variants of RG13 modified...

متن کامل

Ligand binding and allostery can emerge simultaneously.

A heterotropic allosteric effect involves an effector molecule that is distinct from the substrate or ligand of the protein. How heterotropic allostery originates is an unanswered question. We have previously created several heterotropic allosteric enzymes by recombining the genes for TEM1 beta-lactamase (BLA) and maltose binding protein (MBP) to create BLAs that are positively or negatively re...

متن کامل

In Vitro Recombination of Non-Homologous Genes Can Result in Gene Fusions that Confer a Switching Phenotype to Cells

Regulation of protein activity is central to the complexity of life. The ability to regulate protein activity through exogenously added molecules has biotechnological/biomedical applications and offers tools for basic science. Such regulation can be achieved by establishing a means to modulate the specific activity of the protein (i.e. allostery). An alternative strategy for intracellular regul...

متن کامل

Rational Design of a Fusion Protein to Exhibit Disulfide-Mediated Logic Gate Behavior

Synthetic cellular logic gates are primarily built from gene circuits owing to their inherent modularity. Single proteins can also possess logic gate functions and offer the potential to be simpler, quicker, and less dependent on cellular resources than gene circuits. However, the design of protein logic gates that are modular and integrate with other cellular components is a considerable chall...

متن کامل

An engineered calmodulin-based allosteric switch for Peptide biosensing.

This work describes the development of a new platform for allosteric protein engineering that takes advantage of the ability of calmodulin to change conformation upon binding to peptide and protein ligands. The switch we have developed consists of a fusion protein in which calmodulin is genetically inserted into the sequence of TEM1 β-lactamase. In this approach, calmodulin acts as the input do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proteins

دوره 78 6  شماره 

صفحات  -

تاریخ انتشار 2010